-
最近文章
近期评论
- [坑]POI补完计划#1 | qiancl 在 推箱子游戏的一个箱子推动路径搜索算法 (二) 上的评论
- [坑]POI补完计划#1 – qiancl 在 推箱子游戏的一个箱子推动路径搜索算法 上的评论
- HZF 在 推箱子是PSPACE完全问题 上的评论
- sokoban 在 马拉松简史 上的评论
- 跑步世界 在 马拉松简史 上的评论
文章归档
分类目录
博客链接
功能
日归档:2016 年 02 月 19 日
推箱子是PSPACE完全问题
本文地址:http://sokoban.ws/blog/?p=2254 作者:杨超 本文是两篇博文《 一系列具有递归关系和指数长度答案的推箱子关卡》 和《 判断推箱子关卡是否有解的多项式空间的算法》 的续篇。这三篇博文构成推箱子与PSPACE问题三部曲。 一、什么是PSPACE完全问题(PSPACE-complete problems) 前两篇文章已经提过,PSPACE问题指的是:相对于实例(instance)的大小,存在多项式空间算法的判断性问题(decision problem)。 而PSPACE完全问题是PSPACE问题中最困难的一类。即一个问题A能够被称为PSPACE完全问题,如果问题A满足:对任何其他的PSPACE问题B,都存在一个多项式时间的方法把B的实例转化成A的实例,使得这两个实例在这两个问题中有相同的答案(都是“是”或者都是“否”)。由此定义,只要能给出某个PSPACE完全问题的快速算法,那么这个算法就可以用来解决所有的PSPACE问题。 我们这里所说的推箱子问题(SOKOBAN),指的是给出一个推箱子关卡(即实例),如何判断这个关卡是否有解。 无论从实践到理论,都有证据表明推箱子是非常困难的。 实践中,我们举办了好几年的MF8推箱子网络比赛,尚未见到有人或者组织能够用计算机快速解出我们的比赛主关。 在计算复杂性理论中,推箱子问题也被证明是一个PSPACE完全问题。本文的目的就是简单介绍一下这些证明。要证明推箱子问题(或者其他问题)是PSPACE完全问题,要论证两个方面: 一是推箱子首先是PSPACE问题。因为存在很多问题,其难度甚至超出PSPACE的范围,我们需要说明推箱子没有超出这个范围。这一点的证明较为容易,已经在三部曲的第二篇文中说过了。 二是证明推箱子是PSPACE问题里面最难的。这又有两种常用的方法,第一种方法是按照定义,描述一种方案把任何一个PSPACE问题的实例转化为推箱子实例。第二种方法就是,描述一种方案,把某一个已经被证明的PSPACE完全问题的每个实例转化成推箱子的实例。 无论是用那种方法证明,其技术性都是比较高的,比较依赖于巧妙的构思。 二、PSPACE完全问题的例子 已经有许许多多的问题被证明是PSPACE完全问题。这些问题可以被用来证明其他问题也是PSPACE完全问题。这里介绍两个比较有代表性的。 第一个是TQBF问题(True Quantified Boolean Formula)。这个问题的一个实例就是一个每个变量都带有量词(存在、任意)的布尔逻辑公式。公式中的每个变量只能取值“真”或者“假”。 如:(任意x)(存在y)(存在z) ((x或者y)并且z) 我们需要判断这样的一个公式是否总是“真”的。 第二个是LBA问题,即线性空间自动机(Linear Bounded Automata)。这个问题的一个实例是:给出一个线性空间自动机和一个输入,该自动机是否接受该输入。 这个问题的PSPACE完全性证明非常简单。因此利用此问题证明推箱子问题是PSPACE完全问题,和直接用定义证明推箱子问题是PSPACE完全问题,几乎没有多大区别。 除此之外,推箱子和滑块类游戏也是PSPACE完全问题的有趣例子。 三、推箱子是PSPACE完全问题 Dorit Dor和Uri Zwick在1996年写文章[1]研究了推箱子问题的计算复杂度,但未能证明推箱子是PSPACE完全的。加拿大阿尔伯特大学的Joseph C. Culberson看到该文后,在1997年就证明了推箱子是PSPACE完全问题[2]。 … 继续阅读